2 Period Glidande-Medelvärde Prognos


Flyttande medelprognos Inledning. Som du kan gissa vi tittar på några av de mest primitiva tillvägagångssätten för prognoser. Men förhoppningsvis är dessa åtminstone en värdefull introduktion till några av de datorproblem som är relaterade till att implementera prognoser i kalkylblad. I den här venen fortsätter vi med att börja i början och börja arbeta med Moving Average prognoser. Flyttande medelprognoser. Alla är bekanta med att flytta genomsnittliga prognoser oavsett om de tror att de är. Alla studenter gör dem hela tiden. Tänk på dina testresultat i en kurs där du ska ha fyra tester under semestern. Låt oss anta att du fick en 85 på ditt första test. Vad skulle du förutse för ditt andra testresultat Vad tycker du att din lärare skulle förutsäga för nästa testresultat Vad tycker du att dina vänner kan förutsäga för nästa testresultat Vad tror du att dina föräldrar kan förutsäga för nästa testresultat Oavsett om alla blabbing du kan göra för dina vänner och föräldrar, de och din lärare förväntas mycket sannolikt att du får något i området 85 du bara har. Nåväl, nu kan vi anta att trots din egen marknadsföring till dina vänner överskattar du dig själv och räknar att du kan studera mindre för det andra testet och så får du en 73. Nu är vad alla berörda och oroade kommer att Förutse att du kommer att få ditt tredje test Det finns två väldigt troliga metoder för att utveckla en uppskattning oavsett om de kommer att dela den med dig. De kan säga till sig själva: "Den här killen sprider alltid rök om hans smarts. Hes kommer att få ytterligare 73 om han är lycklig. Kanske kommer föräldrarna att försöka vara mer stödjande och säga, Quote, hittills har du fått en 85 och en 73, så kanske du ska räkna med att få en (85 73) 2 79. Jag vet inte, kanske om du gjorde mindre fester och werent vaggar vassan överallt och om du började göra mycket mer studerar kan du få en högre poäng. quot Båda dessa uppskattningar flyttade faktiskt genomsnittliga prognoser. Den första använder endast din senaste poäng för att förutse din framtida prestanda. Detta kallas en glidande genomsnittlig prognos med en period av data. Den andra är också en rörlig genomsnittlig prognos men använder två dataperioder. Låt oss anta att alla dessa människor bråkar på ditt stora sinne, har gett dig en puss och du bestämmer dig för att göra det bra på det tredje testet av dina egna skäl och att lägga ett högre poäng framför din quotalliesquot. Du tar testet och din poäng är faktiskt en 89 Alla, inklusive dig själv, är imponerade. Så nu har du det sista testet av terminen som kommer upp och som vanligt känner du behovet av att ge alla till att göra sina förutsägelser om hur du ska göra på det sista testet. Jo, förhoppningsvis ser du mönstret. Nu kan du förhoppningsvis se mönstret. Vilken tror du är den mest exakta visselpipan medan vi arbetar. Nu återvänder vi till vårt nya rengöringsföretag som startas av din främmande halvsyster, kallad Whistle While We Work. Du har några tidigare försäljningsdata som representeras av följande avsnitt från ett kalkylblad. Vi presenterar först data för en treårs glidande medelprognos. Posten för cell C6 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C7 till och med C11. Lägg märke till hur genomsnittet rör sig över de senaste historiska data men använder exakt de tre senaste perioderna som finns tillgängliga för varje förutsägelse. Du bör också märka att vi inte verkligen behöver göra förutsägelser för de senaste perioderna för att utveckla vår senaste förutsägelse. Detta är definitivt annorlunda än exponentiell utjämningsmodell. Ive inkluderade quotpast predictionsquot eftersom vi kommer att använda dem på nästa webbsida för att mäta förutsägelse validitet. Nu vill jag presentera de analoga resultaten för en tvåårs glidande medelprognos. Posten för cell C5 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C6 till och med C11. Lägg märke till hur nu endast de två senaste bitarna av historiska data används för varje förutsägelse. Återigen har jag inkluderat quotpast predictionsquot för illustrativa ändamål och för senare användning i prognosvalidering. Några andra saker som är viktiga att märka. För en m-period som rör genomsnittlig prognos används endast de senaste datavärdena för att göra förutsägelsen. Inget annat är nödvändigt. För en m-period rörande genomsnittlig prognos, när du gör quotpast predictionsquot, märka att den första förutsägelsen sker i period m 1. Båda dessa problem kommer att vara väldigt signifikanta när vi utvecklar vår kod. Utveckla den rörliga genomsnittsfunktionen. Nu behöver vi utveckla koden för den glidande medelprognosen som kan användas mer flexibelt. Koden följer. Observera att inmatningarna är för antalet perioder du vill använda i prognosen och en rad historiska värden. Du kan lagra den i vilken arbetsbok du vill ha. Funktion MovingAverage (Historical, NumberOfPeriods) Som enstaka deklarering och initialisering av variabler Dim-objekt som variant Dim-räknare som integer Dim-ackumulering som enstaka Dim HistoricalSize som heltal Initialiserande variabler Counter 1 ackumulering 0 Bestämning av storleken på Historisk matris Historisk storlek Historical. Count för Counter 1 till NumberOfPeriods Ackumulera lämpligt antal senast tidigare observerade värden ackumulering ackumulering historisk (historicalSize - numberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Koden förklaras i klassen. Du vill placera funktionen i kalkylbladet så att resultatet av beräkningen visas där den ska följa följande. Utvecklingshantering - Kapitel 3 Vilket av följande skulle vara en fördel med att använda en komposition för försäljning för att utveckla en efterfrågesprognos A. Säljpersonalen påverkas minst av kundens behov. B. Säljkåren kan enkelt skilja mellan kundernas önskemål och sannolika åtgärder. C. Säljpersonalen är ofta medveten om kundernas framtida planer. D. Försäljare är minst sannolikt att bli influerade av de senaste händelserna. E. Försäljare är minst sannolikt att vara förspända av försäljningskvoter. C. Säljpersonalen är ofta medveten om kundernas framtida planer. Medlemmarna av säljkåren bör vara organisationens tättaste band med sina kunder. Vilken fras beskriver närmast Delphi-tekniken A. associativ prognos B. konsumentundersökning C. serie av frågeformulär D. utvecklad i Indien E. historiska data C. serie enkäter Frågeformulären är ett sätt att främja enighet mellan divergerande perspektiv. Vilket är inte ett kännetecken för enkla glidande medelvärden som tillämpas på tidsseriedata A. släpper slumpmässiga variationer i data B. vikter varje historiskt värde lika C. lagrar ändringar i data D. kräver endast sista perioder prognos och aktuella data variationer i data D. kräver endast sista perioder prognos och faktiska data Enkla glidande medelvärden kan kräva flera perioder av data. I trendjusterad exponentiell utjämning består den trendjusterade prognosen av: A. En exponentiellt jämn prognos och en jämn trendfaktor. B. En exponentiellt jämn prognos och ett beräknat trendvärde. C. Den gamla prognosen justerad av en trendfaktor. D. Den gamla prognosen och en jämn trendfaktor. E. Ett glidande medelvärde och en trendfaktor. A. En exponentiellt jämn prognos och en jämn trendfaktor. Både slumpmässig variation och trenden utjämnas i TAF-modeller. I additivmodellen för säsongsmässighet uttrycks säsongsmöjligheten som en anpassning till medelvärdet i multiplikativmodellen, säsongsmässigheten uttrycks som en justering till genomsnittsvärdet. A. Mängdprocent B. Procentandel C. Mängd Mängd D. Procentandelen E. Kvantitativ kvantitativ A. Mängdprocent Tilläggsmodellen lägger helt enkelt till en säsongsmässig anpassning till den provisoriska prognosen. Den multiplikativa modellen justerar den desasonliga prognosen genom att multiplicera den med en säsongsrelativ eller ett index. Prognostekniker antar vanligtvis: A. Frånvaron av slumpmässighet. B. kontinuitet i något underliggande kausal system. C. Ett linjärt förhållande mellan tid och efterfrågan. D. Noggrannhet som ökar längre ut i prognosprojekten. E. Noggrannhet som är bättre när enskilda föremål, snarare än grupper av föremål, övervägas. B. kontinuitet i något underliggande kausal system. Prognostekniker antar vanligen att samma underliggande kausal system som existerade i det förflutna kommer att fortsätta att existera i framtiden. Ett ledande tillvägagångssätt mot prognoser som syftar till att aktivt påverka efterfrågan är: A. reaktivt. B. proaktiv. C. inflytelserika. D. långvarig E. retroaktiv. Att bara svara på efterfrågan är ett reaktivt tillvägagångssätt. Beräkning av glidande medelvärde i Excel I denna korta handledning lär du dig att snabbt beräkna ett enkelt glidande medelvärde i Excel, vilka funktioner som ska användas för att flytta genomsnittet för de senaste N dagarna, veckorna, månaderna eller år, och hur man lägger till en glidande genomsnittlig trendlinje till ett Excel-diagram. I ett par senaste artiklar har vi tittat nära på beräkningen av genomsnittet i Excel. Om du har följt vår blogg vet du redan hur man beräknar ett normalt genomsnitt och vilka funktioner som ska användas för att hitta vägt genomsnitt. I dagens handledning diskuteras två grundläggande tekniker för att beräkna glidande medelvärde i Excel. Vad rör sig i genomsnitt Generellt sett kan glidande medelvärde (även kallat rullande medelvärde, löpande medelvärde eller rörligt medelvärde) definieras som en serie av medelvärden för olika delsatser av samma dataset. Det används ofta i statistik, säsongrensade ekonomiska och väderprognoser för att förstå underliggande trender. I aktiehandel är glidande medelvärde en indikator som visar medelvärdet av en säkerhet under en viss tidsperiod. I affärer är det en vanlig praxis att beräkna ett glidande medelvärde av försäljningen under de senaste tre månaderna för att bestämma den senaste trenden. Till exempel kan det glidande genomsnittet av tre månaders temperaturer beräknas genom att ta medeltemperaturen från januari till mars, sedan medeltemperaturen från februari till april, sedan mars till maj och så vidare. Det finns olika typer av rörliga medelvärden som enkla (även känd som aritmetiska), exponentiella, variabla, triangulära och viktade. I den här handledningen ser vi på det mest använda enkla glidande medlet. Beräkning av enkelt glidande medelvärde i Excel Totalt sett finns det två sätt att få ett enkelt glidande medelvärde i Excel - med hjälp av formler och trendlinjealternativ. Följande exempel visar båda teknikerna. Exempel 1. Beräkna glidande medelvärde för en viss tidsperiod Ett enkelt glidande medelvärde kan beräknas på nolltid med funktionen AVERAGE. Antag att du har en lista över genomsnittliga månatliga temperaturer i kolumn B, och du vill hitta ett glidande medelvärde i 3 månader (som visas på bilden ovan). Skriv en vanlig AVERAGE-formel för de första 3 värdena och mata in den i raden som motsvarar 3: e värdet från toppen (cell C4 i det här exemplet) och sedan kopiera formeln ner till andra celler i kolumnen: Du kan fixa kolumn med en absolut referens (som B2) om du vill, men var noga med att använda relativa radreferenser (utan tecknet) så att formeln justeras korrekt för andra celler. Kom ihåg att ett medelvärde beräknas genom att lägga upp värden och sedan dela summan med antalet värden som ska beräknas. Du kan verifiera resultatet med hjälp av SUM-formeln: Exempel 2. Hämta glidmedel för en de senaste N dagarna veckor månader år i en kolumn Anta att du har en lista med data, t. ex. försäljningsuppgifter eller aktiekurser, och du vill veta genomsnittet av de senaste 3 månaderna när som helst. För detta behöver du en formel som beräknar genomsnittsvärdet så snart du anger ett värde för nästa månad. Vilken Excel-funktion kan göra detta Den bra gamla AVERAGE i kombination med OFFSET och COUNT. AVERAGE (OFFSET (första cellen. COUNT (hela intervallet) - N, 0, N, 1)) Där N är numret för de sista dagarna veckor månader år att inkludera i medelvärdet. Inte säker på hur du använder den här glidande medelformeln i dina Excel-kalkylblad Följande exempel gör saker tydligare. Om man antar att värdena i genomsnitt är i kolumn B som börjar i rad 2, skulle formeln vara följande: Och nu kan vi försöka förstå vad den här Excel-glidande medelformeln faktiskt gör. COUNT-funktionen COUNT (B2: B100) räknar hur många värden som redan är angivna i kolumn B. Vi börjar räkna i B2 eftersom rad 1 är kolumnrubriken. OFFSET-funktionen tar cell B2 (det första argumentet) som utgångspunkt och förskjuter räkningen (värdet returneras av COUNT-funktionen) genom att flytta 3 rader upp (-3 i 2: a-argumentet). Som resultat returnerar det summan av värden i ett intervall som består av 3 rader (3 i det 4: e argumentet) och 1 kolumn (1 i det sista argumentet), vilket är de senaste 3 månaderna som vi vill ha. Slutligen skickas returvärdet till AVERAGE-funktionen för att beräkna det glidande medlet. Tips. Om du arbetar med kontinuerligt uppdaterbara arbetsblad där nya rader sannolikt kommer att läggas till i framtiden, se till att du anger ett tillräckligt antal rader i COUNT-funktionen för att tillgodose potentiella nya poster. Det är inte ett problem om du innehåller fler rader än vad som behövs så länge du har den första cellen till höger, kommer COUNT-funktionen att slänga alla tomma rader ändå. Som du säkert märkte innehåller tabellen i det här exemplet data i endast 12 månader, men ändå levereras intervallet B2: B100 till COUNT, bara för att vara på spara sidan :) Exempel 3. Hämta glidande medelvärde för de sista N-värdena i en rad Om du vill beräkna ett glidande medelvärde för de senaste N dagarna, månaderna, år etc. i samma rad kan du justera offsetformeln på följande sätt: Anta att B2 är det första numret i raden och du vill ha att inkludera de sista 3 siffrorna i medelvärdet tar formeln följande form: Skapa ett Excel-glidande medeldiagram Om du redan har skapat ett diagram för dina data, lägger du till en glidande genomsnittlig trendlinje för det diagrammet i några sekunder. För detta ska vi använda Excel Trendline-funktionen och de detaljerade stegen följs nedan. I det här exemplet skapade Ive en 2-D-kolonnediagram (Infoga tab gt Charts-grupp) för våra försäljningsdata: Och nu vill vi visualisera det glidande genomsnittet i 3 månader. I Excel 2010 och Excel 2007 går du till Layout gt Trendline gt More Trendline Options. Tips. Om du inte behöver ange detaljerna, t. ex. det glidande medelintervallet eller namnen, kan du klicka på Design gt Add Chart Element gt Trendline gt Flytta genomsnittet för det omedelbara resultatet. Format Trendline-rutan öppnas på höger sida av ditt arbetsblad i Excel 2013, och motsvarande dialogruta kommer att dyka upp i Excel 2010 och 2007. För att förbättra din chatt kan du växla till fliken Fill amp Line eller Effects på rutan Format Trendline och spela med olika alternativ som linjetyp, färg, bredd, etc. För kraftfull dataanalys kan du lägga till några glidande genomsnittliga trendlinjer med olika tidsintervaller för att se hur trenden utvecklas. Följande skärmdump visar de 2 månaders (gröna) och 3 månaders (tegelröd) rörliga genomsnittliga trendlinjerna: Nåväl, det handlar om att beräkna glidande medelvärde i Excel. Proveringsbladet med de rörliga medelformlerna och trendlinjen är tillgänglig för nedladdning - Flyttande medelvärde kalkylblad. Jag tackar dig för att du läser och ser fram emot att träffa dig nästa vecka. Du kanske också är intresserad av: Ditt exempel 3 ovan (Flytta medelvärdet för de sista N-värdena i rad) fungerade perfekt för mig om hela raden innehåller siffror. Jag gör det här för min golfliga liga där vi använder ett 4 veckors rullande medelvärde. Ibland är golfare frånvarande så istället för ett poäng kommer jag att lägga ABS (text) i cellen. Jag vill ändå att formuläret ska leta efter de senaste 4 poängen och inte räkna ABS antingen i täljaren eller i nämnaren. Hur ändrar jag formeln för att uppnå detta Ja, jag märkte att om cellerna var tomma var beräkningarna felaktiga. I min situation spårar jag över 52 veckor. Även om de senaste 52 veckorna innehöll data var beräkningen felaktig om någon cell före 52 veckorna var blank. Jag försöker skapa en formel för att få det glidande genomsnittet för 3 år, uppskattar om du kan hjälpa till med pls. Datum Produktpris 1012016 A 1,00 1012016 B 5,00 1012016 C 10,00 1022016 A 1,50 1022016 B 6,00 1022016 C 11,00 1032016 A 2,00 1032016 B 15,00 1032016 C 20,00 1042016 A 4,00 1042016 B 20,00 1042016 C 40,00 1052016 A 0,50 1052016 B 3,00 1052016 C 5,00 1062016 A 1,00 1062016 B 5,00 1062016 C 10,00 1072016 A 0,50 1072016 B 4,00 1072016 C 20,00 Hej, jag är imponerad av den stora kunskapen och den korta och effektiva instruktionen du tillhandahåller. Jag har också en fråga som jag hoppas att du kan låna din talang med en lösning också. Jag har en kolumn A på 50 (veckovis) intervalldatum. Jag har en kolumn B bredvid den med planerad produktion i genomsnitt per vecka för att slutföra målet på 700 widgets (70050). I nästa kolumn summerar jag mina veckovisa inkrement hittills (100 till exempel) och beräknar min återstående antal prognos avg per återstående vecka (ex 700-10030). Jag skulle vilja kopiera varje vecka ett diagram som börjar med den aktuella veckan (inte datumet för start x-axeln i diagrammet), med summan (100) så att min utgångspunkt är den aktuella veckan plus resten avgweek (20), och avsluta den linjära grafen vid slutet av vecka 30 och y-punkten på 700. Variablerna för att identifiera rätt celldatum i kolumn A och slutar vid mål 700 med en automatisk uppdatering från dagens datum, förvirrar mig. Kan du hjälpa dig med en formel (jag har försökt IF logik med idag och bara inte löser det.) Tack Vänligen hjälp med den korrekta formeln för att beräkna summan av timmar som har angetts under en rörlig 7-dagarsperiod. Till exempel. Jag behöver veta hur mycket övertid som arbetas av en individ under en rullande 7-dagarsperiod beräknad från årets början till slutet av året. Den totala antalet arbetade timmar måste uppdateras under de 7 rullande dagarna då jag går in i övertidstimmen dagligen. Tack. Finns det ett sätt att få summan av ett nummer under de senaste 6 månaderna? Jag vill kunna beräkna summa för de senaste 6 månaderna varje dag. Så illa behöver det uppdateras varje dag. Jag har ett excel-ark med kolumner varje dag förra året och kommer så småningom att lägga till mer varje år. någon hjälp skulle uppskattas, eftersom jag är stumped Hej, jag har ett liknande behov. Jag måste skapa en rapport som visar nya klientbesök, totala kundbesök och annan information. Alla dessa fält uppdateras dagligen i ett kalkylblad, jag behöver dra uppgifterna för de föregående 3 månaderna uppdelade per månad, 3 veckor i veckor och sista 60 dagar. Finns det en VLOOKUP eller formel eller något jag kan göra som länkar till arket som uppdateras dagligen, så att min rapport kan uppdateras dailyMoving medeltal och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller, slumpmässiga promenadmodeller, och linjära trendmodeller, nonseasonal mönster och trender kan extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-utan-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde medför att utjämning av stötarna i originalserien. Genom att justera graden av utjämning (bredden på glidande medelvärdet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel - och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet av Y vid tiden t1 som är gjord vid tiden t motsvarar det enkla medelvärdet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå för en prognos av tidsserien Y som gjordes så tidigt som möjligt enligt en given modell.) Detta medel är centrerat vid period-t (m1) 2 vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom det sanna värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är väldigt stor (jämförbar med längden på uppskattningsperioden) motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotfoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa på den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer man mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (den lokala medelvärdet). Om vi ​​istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är dock inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel konfigurera ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi ​​försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt: Medelåldern är nu 5 perioder (91) 2). Om vi ​​tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktigt genomsnitt: Modell C, det 5-åriga glidande medlet, ger det lägsta värdet av RMSE med en liten marginal över 3 - term och 9-medeltal, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer respons eller lite mer jämnhet i prognoserna. (Tillbaka till början av sidan.) Browns Simple Exponential Smoothing (exponentiellt vägd glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet av L vid tiden t beräknas rekursivt från sitt eget tidigare värde som här: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till det senaste observation. Prognosen för nästa period är helt enkelt det nuvarande släta värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformuläret är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Det här är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Den enkla, snabba genomsnittliga prognosen tenderar därför att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given medelålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den lägger relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de senaste 3 värdena än SMA-modellen och vid samtidigt som det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera det genomsnittliga kvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, som visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervaller som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallet för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervaller för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA-modell (0,1,1) utan konstant till serien som analyseras här, uppskattas den uppskattade MA (1) - koefficienten vara 0,7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant långsiktig exponentiell trend till en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan uppskattas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Return to top of page.) Browns Linjär (dvs dubbel) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- stegprognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande växthastighet eller ett cykliskt mönster som står klart ut mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiella utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligen enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att använda enkel exponentiell utjämning till serie Y. Dvs, värdet av S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att använda enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. för vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst, t som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här rekryteras de rekursivt från värdet av Y observerat vid tiden t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas sedan rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 förutsätter att trenden ändras endast mycket långsamt över tiden, medan modeller med större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan uppskattas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet på 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell att estimera en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I det här fallet visar sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så att denna modell är medeltal över ganska mycket historia för att uppskatta trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du 8220eyeball8221 ser den här tomten ser den ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör inte en stor skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi ​​till exempel väljer att ställa in 946 0,1, är genomsnittsåldern för de data som används för att uppskatta den lokala trenden 10 perioder, vilket innebär att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s hur prognosplotet ser ut om vi sätter 946 0,1 medan ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi ​​starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi ​​vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär. Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara oskäligt att extrapolera kortsiktiga linjära trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörning, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre ur prov än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte alla mjukvaror beräknar konfidensintervall för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.)

Comments

Popular posts from this blog

Forex Network London 2014

Czarina Forex Alabang Centrum

Forex Handlare Program Nevada